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Effect of binding on particle number fluctuations in a membrane channel

Alexander M. Berezhkovskii®
Mathematical and Statistical Computing Laboratory, CIT, National Institutes of Health, Bethesda,
Maryland 20892

Mark A. Pustovoit
St. Petersburg Nuclear Physics Institute, Gatchina, 188350 Russia

Sergey M. Bezrukov”
Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda,
Maryland 20892 and St. Petersburg Nuclear Physics Institute, Gatchina, 188350 Russia

(Received 4 December 2001; accepted 17 January)2002

Transport of solutes through membrane channels produces additional noise in the channel ion
current because the number of solute molecules in the channel fluctuates. We obtain a general
expression for the power spectral density of these fluctuations in a cylindrical channel in the
presence of a binding site of arbitrary strength. The expression shows how the spectral density
transforms from that in the case of no-binding to the Lorentzian spectral density corresponding to
the strong-binding limit. Brownian dynamics simulations confirm our analytical results20@2
American Institute of Physics[DOI: 10.1063/1.1458935

I. INTRODUCTION from ion shot-noiseby many orders of magnitudeThere-

, _fore, PSD is a source of information about the particle be-
Membrane transport and molecular mechanisms of it$,avior in the channel

regulation are among central themes of cell piolbgy.is In our previous papémwe considered the particle num-
well established now that exchange of metabolites and oth§fe, ,c(ations in a cylindrical channel connecting two res-
hlgh—molecular—\-/ve|ght. ;olutes between cells and Sche"u_laérvoirs and developed a theory that establishes the depen-
compartments is facilitated by membrar)e—bound proteing o ofS(f) on the particle diffusion constants in the
that forr:n pr}annel_s of largécompared tlo lon chagnels of channel and in the bulk as well as on the channel length and
neurophysiology diameter, up to Severa nanometerss & radius. That theory treats the problem in the case when par-
consequence, new methods for studies of channel-facilitat les diffuse freely in the channel. However, studies per-
large-molecular transport are in great demand. Among S€\5rmed on channels of different Origﬁ,fl,g—ﬂ ha;/e demon-
eral techniques there is a promising approach, the SPectiOgfateq that usually there is a specific binding between
copy of metabolite-induced current quctu_atufrﬁsl_I exploits channels and metabolites. When the binding is strong, that is,
the fact that the conductance of a pore filled with electrolyteme mean lifetime of the particle on the site is much larger

micron-sized particles in suspensidnSeveral years ago it cpannel conductance noise is of the generation-recombin-
was successfully applied to nanometer-sized polymer mol 13,14

. . ation type.
ecules passing through membrane chanfiiisa typical ex- The goal of the present paper is to obtain a general ex-

periment, the mgasured qua.mtif[y is the power spectral denSiyression for PSD of the particle number fluctuations in a
(PSD of fluctuations of the ionic current through a channel, o hrane channel with a binding site of arbitrary strength.
Si(f). When the concentration of particlesnetabolite 0 theory includes both limiting cases described above, i.e.,
molecules is low, S(f) is proportional to the normalized (o0 giffusion and strong binding, and covers the gap be-
PSD of the particle number fluctuationS(f): S(f)  yyeen them. The main result of the paper is the expression

=(N)(Ag)?V?S(f), where(N) is the average number of ¢ "o <ot densitg(f ) given in Eq.(16
particles in the channelAg is the reduction of the channel P $(1) g a-(16).

conductance caused by one particle, ands the applied
voltage. Experiments with different channels and particled!- STATEMENT OF THE PROBLEM

show that at practically accessible frequencies of several cgnsider two compartments with noninteracting par-
kHz, the particle-induced noise exceeds the noise expectgflies connected by a narrow cylindrical channel of lenigth
(Fig. 1). The particles diffuse independently. In addition,
dpermanent address: Karpov Institute of Physical Chemistry, Vorontsovdhey may be reversibly trapped by a binding site located in
b)POI(; 10, MO;COW K-64, 103064 RUhSSiT(-j be add & National s the middle of the channel. We assume that the concentration
Author to whom correspondence shou e addressed: National Institut H H H ] _
of Health, Bldg. 9, Room 1E-122 Bethesda, MD 20892-0924. Electroniceaf the pal’tIC|ES n t_he channel |s_suff|C|entIy low so that com
mail: bezrukov@helix.nih.gov; Tel(301) 402-4701; FAX: (301 402-  Petition of the particles for_the site can be neglected_. We also
9462. assume that the channel is so narrow that the particle reach-
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The spectral density, being the cosine Fourier transform of
—e ’ * . C(t), can be expressed in terms of the Laplace transform
. d ! ':. ! é(s):fo e S'C(t)dt,
)
wheres is the Laplace parameter, as

FIG. 1. A sketch of the system. Brownian particles wander frégifjusion S(f)=4 R¢C(2=fi)}, (4)
constantD=0.5) in two cubical reservoirgside size 50 and cylindrical . . . . .

channel of length. =40 and diametea=5. They bind occasionally on the Wherei is the imaginary unit. Thus, the problem is reduced
site in the middle of the channéshown as the gray stripvith the rate  to finding the Laplace transform of the survival probability in
constants for trapping and releasigandk, . The total number of particles  the channel.

in the system is fixed, but the number of particles in the channel fluctuates. L .
Arrows indicate the instantaneous particle displacements. There is no inter- As we noted above, the spectral density is known in

action between particles; any number of them can be on the site simultdimiting cases of free diffusiorino binding site or very long
neously. channel and strong bindingwhen the detrapping is the rate
limiting step. In the first case we hafe

7t f

ing the channel boundary from inside escapes foré¢see \/— sinr( —L) —sin( —L)
Ref. 8 for more detailed treatmenExcept for the binding (f)= D D D
site, the channel walls are assumed perfectly reflecting. We (arf )32 af L f L
will calculate the time-dependent survival probability of a sink? — —| +costt — =

e inai ; i et D 2 D 2
particle inside the channel given the equilibrium distribution 5
of the particle initial position in the channel. Since this sur- ®)

vival probability coincides with the normalized autocorrela- In the second limiting case the spectral density-18
tion function of the number of particles in the channel, the

former will be used to find the spectral dendisge Ref. 8 for Sy(f)= zLdz (6)
the details. kg+(27f)
It is natural to approximate the particle motion in the
channel as one-dimensional and characterize the channel fiy. CALCULATIONS OF SPECTRAL DENSITY
two parameters, the diffusion constabtand the channel ) )
length L. The binding site is described by two additional ~ The Laplace transform ok(t) in Eq. (3) is
parameters: the association and dissociation rate constants, _ ~ L
k, andkgy. The probability density to find the diffusing par- C(s)=Py(s)+ f p(x,s)dx. (7)
ticle at the pointx, 0<x<L, at timet, p(x,t), and its prob- 0
ability to be trapped at timg Py (t), satisfy The Laplace transforn®(s) can be expressed in terms of
ap(x,t) Pp(x,t) L p(x,s) using Eq.(1) together with the initial condition in
= : - = Eqg. (2
L
L 1+(kat+kgL)P| 5,5
+k 5(x— —)P t), . @ 2
a0 X7 2| PulV Pu(s)= Tk Po. ®
(1) ‘
dPy(t) = KgPy (1) +K,p E t)- It is convenient to expres(x,s) in terms of the
dt ' 2 Laplace transform of the propagagx,t|x,), that satisfies
To complete this set, we should add initial and boundaq}he diffusion equation
conditions: ag(X,t|Xo) 5 3%g(X,t[Xg) ©
= 2
PO =p(L,H)=0, a x
K with the absorbing boundary conditions at the ends of the
P, (0)= —— =Py, interval, g(0t|xo) =g(L,t|xg) =0, and the initial condition
Kat kgl g(x,0xg) = 8(x—Xo). With the aid of this propagator we can
1 K (2)  write the first equation of the set in Efl) as
d
P(X,00=+[1-Py(0)]= ———=Po- L {
+ L
L Kat kol p(x,t)=p0J g(x,t|x0)dx0+f dt’g(x,t—t’ E)
The correlation function of interegthe survival prob- 0 0
ability), is given by L
X den(t’)—kap(E,t’”- (10)

L
C(t) =Py (t +f x,t)ydx. 3
(O=Pult) 0 Px.t ® Laplace transform of Eq(10) is
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L Next, we find an expression fqs(L/2,s) in terms of
2 9(x,s|x,). For this purpose, we take=L/2 in Eq.(11) and
L substitute ther®,,(s) given in Eq.(8). As a result, we obtain
X{kdﬁtr(s)_kap(ﬁasﬂ- (11) @ linear equation with respect f@(L/2,s) from which we

find
L
2

L
p(x,s)= pofo 9(X,s|xo)dXo+ g(x,s

Using Egs.(8) and (10), we can writeC(s) in terms of L
p(L/2,s) and§(x,s|xo): A(_,s _ Po

s+kd+skag(§,s

(S+ kd)

R L (L
Es)=po [ ax.sixo)cxa

L (L (L L
BRI P JLA xSE)dx XJOQ 2 dxo+kag(§'si)]' 49
s+kqy d Og 2
« . . L Equatiqns(l_Z) and (13 Provide an expression for survival
+ 2 1_SJ Q(x,s —)dx p(—,s). (12) probability m_terms ofg(x,s|X). The propagator can be
s+Ky 0 2 2 found by solving Eq(9):

f sinl—( (L—xgp) \fg) sinr<X\/§)
) \/ﬁsinl-( L \/g
s sinl—<(L—x) \/g) sinl'(xo \/g) .

S Xo<X<L.
| \/ﬁsinr( L \/;

The survival probability now reads:

R 1 2Ky D L /s
C(s)=—| 1—- . —tanh = \/ <= |+
S k,+ kgl S 2 D

0<x<Xgp;

2k,

(15
L S S S
4(s+kg)cost| = \/ = | +k,\/=sinh L \/—
2 VD D D
Substituting the last expression into Ed), we obtain the spectral density
f 4k [ D }‘(L [27fi
S(f)=————-Im ——tanh = \/ —
(0 7f(ka+tkgl) 2rfi 2 D
2k
N : . (16)
L 2q7fi 2q7fi 27fi
4(2mfi+kg)cost| = \/ — | +ky\/ ——sinh L \/ —
2 D D D
|
This expression is the main result of the present paper. One L2
can check that for limiting cases of very long and very short 3D’ Kg—o, or k,—0, or L—»,
channels this general expression reduces to those in(&qgs. S(0)= (18)
and(6). i L—0.
Finally, we write an expression for PSD at zero fre- Kg
quency:
(0)= 3kgD (KatKgl) ' ( To confirm our analytical results we performed Brown-
ian dynamics simulations of the system illustrated in Fig. 1.
In the limiting casesS(0) is The number of particles in the entire system was fixed. The
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Spectral slope

Spectral density

10”7 10° 10° 10* 10°

FIG. 2. The spectral density of particle number fluctuations obtained from
simulations with fixedk,=10"2 and values ok4 varying from bottom to
top: = (free diffusion, 9.91:1074, 9.97.1075, 1.01: 10" °. The solid curves
display the analytical dependences in ELf).

Spectral slope

particles wandered randomly in three dimensions, interacting

only with reflecting walls and the site. Interaction with the T S R U R SRR
site was realized in the form of sticking and releasing prob- 107 10° 10° 10* 10° 10° 10"
abilities vs and v, so the actual values &, andky were () f

obtained in the course of the simulations. The number of o )
paricies in the channel was recorded as time series, and i The sebe of e specka shoun i Pulstnel @) nc i, 5
spectral density(f ) was obtained by their Fourier transfor- part becomes pronounced in the case of strong binding. The solid curves are
mation. the slope found from the expression in Ej6). The symbols correspond to
The results are shown in Fig. @ixed k,) and Fig. 3  those used in Figs. 2 and 3.
(fixed ky). The transition from diffusion-dominated behavior
(the lower spectrato a binding-dominated oné&he upper
ones is clearly seen. The theoretical dependence given ireter(a detailed discussion of this issue can be found in Ref.
Eqg. (16) describes the spectra well in the full range of the8). It is seen thatS(0) becomes close to its value in the
parameters studied. There is a slight discrepancy in thstrong binding limit in Eq.(18) already fork,~KkqL.
diffusion-dominated case that is due to a finite channel diam- The second informative quantity that can be easily ob-
tained from the spectrum is its slope. It is defined as
dingf)/dInf and gives the apparent power-law exponent.
We see that all the presented spectra demonstrate “universal

diffusion behavior”f ~¥2 at high frequencie$ When bind-
10°F ing strengthens, the Lorentzian part appears and becomes
more and more pronounced. Figure 4 displays this fact and
10" i shows also that the frequency range of the slbpedepends

on the interplay betweek, andky.

V. CONCLUDING REMARKS

Spectral density
a,

In the present paper we obtained an analytic expression
for PSD of particle number fluctuations in a narrow mem-
brane channel in the presence of a specific binding site, Eq.
j L e , (16). Computer simulations demonstrated that the theory

107 10° 10° 10* 10° works well. Figures 2, 3, and 4 show how the presence of
f binding site influences the PSD low-frequency magnitude,
shape, and slope. The expression for zero-frequency value of
FIG. 3. Same as in Fig. 2 but with fixdg=10"° and values ok, varying PSD given in Eq.(17) may be useful to analyze the data

from bottom to top: O(free diffusion, the same data as in Fig, 9.35 . . . . . .
-107%, 9.96 1075, 1.01:10"3. One can see that the characteristic “corner” obtained in the case when the metabolite residence time in

frequencies of the Lorentzian part of the spectra are the same because of tHa€ channel is too Sma_‘” to be resolved by either real time or
same detrapping rate. spectral shape analysis.
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